Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
نویسندگان
چکیده
Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 (PFK2), H+-plasma membrane ATPase (PMA1), and glucose sensors (SNF3 and RGT2) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions.IMPORTANCE Living cells are fine-tuned through evolution to thrive in their native environments. Genome alterations to create organisms for specific biotechnological applications may result in unexpected and undesired phenotypes. We used a minimal synthetic biological system in the yeast Saccharomyces cerevisiae as a platform to reveal novel connections between carbon sensing, starvation conditions, and energy homeostasis.
منابع مشابه
Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae
BACKGROUND Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological ne...
متن کاملEvaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathwa...
متن کاملTransformation and expression of Penicillium funicolusum glucose oxidase gene in yeast
Glucose oxidase is an important enzyme hydrolyzing for its hydrolyzing activity on glucos. It possesses and has a wide board of applications in different industries such as bakery, pharmaceutical, plant pathology and biosensors. In this study, yeast (Saccharomyces cerevisiae) was transformed successfully by the glucose oxidase gene (gox) obtained from Penicillium funicolusum. The secreted gluco...
متن کاملIdentification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans
BACKGROUND The conversion of lignocellulosic biomass to biofuels (second-generation biofuel production) is an environmentally friendlier alternative to petroleum-based energy sources. Enzymatic deconstruction of lignocellulose, catalyzed by filamentous fungi such as Aspergillus nidulans, releases a mixture of mono- and polysaccharides, including hexose (glucose) and pentose (xylose) sugars, cel...
متن کاملDirected evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain.
Balancing and increasing the flux through an engineered heterologous pathway in a target organism to achieve high yield and productivity remains an overwhelming challenge in metabolic engineering. Here we report a novel strategy combining directed evolution and promoter engineering for rapid and efficient multi-gene pathway optimization. As proof of concept, this strategy was applied to optimiz...
متن کامل